一粒云RAG:文字搜索图片图片搜索开发

一、准备工作

  1. 安装与配置 Elasticsearch
    • 确保本地或服务器上有 Elasticsearch 7.0 以上版本。
    • 配置好 ES,开启向量搜索功能。在 elasticsearch.yml 中设置: xpack.ml.enabled: false
  2. 下载和配置 CLIP 模型
    • 下载 CLIP 模型(比如 OpenAI 提供的):
      • 安装 PyTorch 和 Hugging Face 相关依赖。
      • 下载 CLIP 模型:https://github.com/openai/CLIP
      • 测试 CLIP 是否正常运行,确保能将图像和文本转换为嵌入向量。

二、步骤 1:文本和图像编码

目标:将文本和图像转换为向量,并准备好存储到 Elasticsearch 中。

1.1. 文本编码

  • 使用 CLIP 或其他文本处理模型,将输入的文本转换为一个固定维度的向量。
  • 实现思路:使用 PyTorch 或 Hugging Face 的 Transformers 库调用 CLIP 模型,将输入文本编码为嵌入向量。
  • 示例代码: import clip import torch from PIL import Image model, preprocess = clip.load("ViT-B/32", device='cuda') text = ["a photo of a cat", "a photo of a dog"] text_inputs = clip.tokenize(text).to(device) with torch.no_grad(): text_features = model.encode_text(text_inputs)

1.2. 图像编码

  • 使用 CLIP 将图像转换为嵌入向量。
  • 实现思路:将图像通过 CLIP 的 encode_image 方法转换为图像向量。
  • 示例代码: image = Image.open("cat.jpg") image_input = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image_input)

三、步骤 2:将向量存储到 Elasticsearch

目标:将文本和图像的向量存储到 Elasticsearch 索引中,准备好进行搜索。

2.1. 设计 Elasticsearch 索引

  • 创建索引模板,包含向量字段(如 dense_vector 类型)来存储图像和文本的嵌入向量。
  • 示例创建索引的 REST 请求: PUT /search_index { "mappings": { "properties": { "text_embedding": { "type": "dense_vector", "dims": 512 # CLIP 输出的文本向量维度 }, "image_embedding": { "type": "dense_vector", "dims": 512 # CLIP 输出的图像向量维度 } } } }

2.2. 将向量插入到 Elasticsearch

  • 使用 Elasticsearch 的 Java 客户端 API,将文本和图像的向量分别插入到索引中。
  • 示例代码(Java): // 构建 JSON 文档,包含向量数据 String document = "{" + "\"text_embedding\": [0.1, 0.2, 0.3, ...], " + "\"image_embedding\": [0.1, 0.2, 0.3, ...]" + "}"; // 使用 Elasticsearch 客户端插入文档 IndexRequest request = new IndexRequest("search_index").id("1").source(document, XContentType.JSON); IndexResponse response = client.index(request, RequestOptions.DEFAULT);

四、步骤 3:实现文本和图像的相似度搜索

目标:根据输入的文本或图像,找到与之相似的图像或文本。

3.1. 文本搜索(txt2image)

  • 输入文本,使用 CLIP 编码为向量,并在 Elasticsearch 中进行向量相似度搜索。
  • 示例代码: // 输入文本 String queryText = "a photo of a dog"; // 将文本转换为向量(可以调用 PyTorch 后端服务来获取向量) float[] textVector = getTextEmbedding(queryText); // 调用 CLIP API 获取向量 // 构建查询请求 SearchRequest searchRequest = new SearchRequest("search_index"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.boolQuery() .should(QueryBuilders.scriptScoreQuery(QueryBuilders.matchAllQuery(), new Script("cosineSimilarity(params.query_vector, 'text_embedding') + 1.0") .params(Map.of("query_vector", textVector))) ) ); searchRequest.source(searchSourceBuilder); // 执行查询 SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

3.2. 图像搜索(image2image)

  • 输入图像,使用 CLIP 将图像转换为向量,并在 Elasticsearch 中进行向量相似度搜索。
  • 示例代码: // 输入图像并提取图像嵌入向量 float[] imageVector = getImageEmbedding(image); // 调用 CLIP API 获取向量 // 构建查询请求 SearchRequest searchRequest = new SearchRequest("search_index"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.boolQuery() .should(QueryBuilders.scriptScoreQuery(QueryBuilders.matchAllQuery(), new Script("cosineSimilarity(params.query_vector, 'image_embedding') + 1.0") .params(Map.of("query_vector", imageVector))) ) ); searchRequest.source(searchSourceBuilder); // 执行查询 SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

五、步骤 4:返回搜索结果

目标:将 Elasticsearch 返回的结果进行格式化,提供给前端。

4.1. 格式化返回结果

  • 将 Elasticsearch 查询结果中的图像路径或其他信息返回给前端。
  • 示例: SearchHit[] hits = searchResponse.getHits().getHits(); for (SearchHit hit : hits) { // 获取匹配的图像或文本数据 String imagePath = hit.getSourceAsMap().get("image_path").toString(); System.out.println("Found image: " + imagePath); }

六、步骤 5:集成前端(可选)

如果需要将这个搜索功能展示给用户,可以通过 Java 后端提供 API 接口,前端使用 React 或其他框架来展示搜索结果。

总结

这个技术路径的核心是:

  1. 使用 CLIP 将文本和图像转换为向量。
  2. 将向量存储到 Elasticsearch,支持 dense_vector 类型进行高效存储和查询。
  3. 使用 Elasticsearch 提供的向量相似度查询功能来实现 txt2imageimage2image 搜索。

开发人员只需要关注数据流的实现,确保向量的提取与存储的准确性以及查询的高效性。通过这种方式,开发者可以快速实现跨模态搜索,且一周内完成开发和测试。

向量搜索 和 RAG 搜索的本质区别

向量搜索RAG 搜索 都是当前非常重要的搜索技术,它们都利用了深度学习和大规模数据处理,但它们的目的和实现方式存在显著的区别。

1. 定义与基本概念

  • 向量搜索(Vector Search):是一种基于向量空间的搜索技术。它将文本、图像、音频等数据转换成向量(通常是高维空间中的点),然后通过计算查询向量与存储向量之间的相似度(如余弦相似度、欧几里得距离等)来检索最相关的数据。向量搜索广泛应用于相似度搜索,尤其在图像搜索、推荐系统、问答系统等场景中非常常见。
  • RAG 搜索(Retrieval-Augmented Generation Search):是一种结合了信息检索(retrieval)和生成模型(generation)的搜索技术。RAG 搜索首先通过信息检索从文档库中检索相关内容,然后使用生成模型(如 GPT-3 或 T5)基于检索到的信息生成一个新的回答或内容。它结合了检索的精准性和生成模型的灵活性,适用于更加复杂的查询场景。

2. 核心区别

特性向量搜索RAG 搜索
基本原理将文本或数据转化为向量,通过计算相似度进行搜索。结合检索与生成:检索相关内容并通过生成模型生成最终回答。
返回结果返回与查询最相似的数据或文档片段。返回基于检索内容生成的自然语言答案或段落。
依赖技术向量化模型(如 CLIP、BERT)、向量搜索引擎(如 Elasticsearch、Faiss)。向量化模型(如 CLIP、BERT)、生成模型(如 GPT-3、T5)。
信息整合仅进行相似度计算,返回相关的文档或数据片段。在检索结果的基础上进行信息整合和生成。
生成能力不具备生成能力,仅返回原始数据。利用生成模型基于检索到的信息生成新的内容。
适用场景图像搜索、推荐系统、信息检索等。问答系统、智能客服、对话系统等。
理解能力基于相似度匹配,不具备上下文理解。通过生成模型理解检索内容并生成回答。
复杂查询处理适用于简单的相似度匹配查询。适用于复杂问题,尤其是开放式问题或需要整合多条信息的查询。
返回的内容形式返回文档、图片或其他原始数据。返回自然语言生成的回答、摘要或对话。

3. 工作流程的不同

向量搜索:

  1. 向量化:将文本、图像或其他数据转换成固定维度的向量表示。这些向量通过深度学习模型(如 BERT、CLIP)得到。
  2. 存储与索引:将这些向量存储到向量数据库或搜索引擎(如 Elasticsearch、Faiss)中,并为每个数据项建立向量索引。
  3. 查询:用户发起查询,系统将查询转化为向量,然后通过计算查询向量与存储向量的相似度来找出最相关的项。
  4. 返回结果:返回与查询最相似的文档或数据片段。

关键特点

  • 主要依赖 向量相似度计算(如余弦相似度或欧几里得距离)。
  • 不涉及生成,返回的是检索到的原始数据。

RAG 搜索:

  1. 检索阶段:首先,系统根据用户的查询,从大规模的文档或数据集中检索出相关内容(可以是文本片段、文档等)。
  2. 生成阶段:检索到的内容被传递给生成模型,生成模型会根据检索到的信息生成一个新的答案或文本。这一步不仅依赖于检索结果,还会结合上下文和模型的生成能力。
  3. 返回生成内容:系统返回生成模型基于检索内容生成的自然语言答案或描述。

关键特点

  • 结合了 信息检索生成能力,不仅检索信息,还能生成流畅、上下文相关的回答。
  • 适用于更复杂的查询,尤其是 自然语言生成 场景。

4. 优缺点对比

特性向量搜索RAG 搜索
优势1. 实现相对简单,易于集成。1. 能够生成自然语言答案,适应复杂查询。
2. 高效的相似度计算,适合大规模数据检索。2. 提供了更智能的回答,适应开放式问题。
3. 支持图像、文本、音频等多模态数据检索。3. 能够综合多个文档的信息提供更全面的答案。
劣势1. 仅返回检索到的原始内容,不生成新的信息。1. 生成过程可能受到模型限制,回答不总是准确。
2. 对于复杂查询,可能不如 RAG 灵活。2. 需要更多的计算资源,尤其是在生成阶段。
3. 仅适用于相似度匹配场景。3. 相比向量搜索,性能可能较差,尤其是在高并发查询时。

5. 使用场景对比

  • 向量搜索
    • 推荐系统:根据用户历史行为或兴趣,找到最相似的物品(如商品推荐、电影推荐等)。
    • 图像搜索:根据用户输入的图像或图像描述查找相似的图像。
    • 信息检索:对于文档或文本的查询,返回最相关的文章或段落。
  • RAG 搜索
    • 智能问答系统:根据用户提出的复杂问题,检索相关文档并生成完整的答案。例如,自动客服、技术支持等。
    • 聊天机器人:在对话系统中,通过检索历史对话或知识库中的信息,并生成合适的回应。
    • 开放式查询:对于无法简单通过关键词匹配回答的复杂问题,RAG 可以生成更符合用户需求的自然语言答案。

6. 总结

  • 向量搜索 是一种检索技术,通过相似度计算在向量空间中查找最相关的文档或数据,侧重于快速和高效的匹配。
  • RAG 搜索 结合了信息检索和生成技术,能够在检索到相关信息的基础上,生成符合用户需求的自然语言回答或内容,适用于更加复杂和动态的场景。

两者的最大区别在于 生成能力,RAG 搜索不仅仅是检索,还能通过生成模型对检索到的结果进行加工和创造,提供更加丰富和智能的答案。

RAG与传统搜索的本质区别


RAG(Retrieval-Augmented Generation)搜索 的本质区别在于,它结合了 信息检索(retrieval)生成(generation) 的能力,而传统的搜索方法通常只依赖于信息检索部分,主要进行匹配和排序。RAG 模型通过集成生成模型来提升搜索结果的丰富性和上下文适应能力,提供更为自然和智能的回答或结果。

1. 传统搜索(例如 Elasticsearch)

在传统的搜索系统中,信息检索的过程通常是通过 匹配查询词 和存储的文档(或向量)来找到最相关的结果。这类系统的核心特性是:

  • 基于关键词匹配:通过布尔查询、分词、匹配等技术来查找最匹配的文档。
  • 信息定位:用户的查询可以直接返回一个或多个精确匹配的文档或数据,这些文档是完全独立的,返回的内容多是片段或整篇文档。

举个例子:

  • 用户搜索“Java编程基础”,ES 系统会返回包含这个关键词的所有文档,用户可以浏览这些文档来获取答案。

2. RAG 搜索(Retrieval-Augmented Generation)

RAG 的本质区别在于它结合了 检索生成 这两部分:

  • 检索部分:类似传统搜索系统,首先从文档库或数据库中通过关键词检索到相关信息,确定出最相关的文档或信息片段。
  • 生成部分:在检索结果的基础上,RAG 使用 生成模型(如 GPT、T5 等) 来“生成”或“增强”最终的回答或结果。它不仅仅返回原始的检索结果,还能够 将检索到的信息整合,并生成一个更符合用户需求的输出。

举个例子:

  • 用户搜索“Java编程基础”,传统的搜索系统会返回相关的文档。而 RAG 系统 会检索相关的文档片段,然后利用生成模型生成一个更加定制化的回答,比如直接给出“Java编程基础包括变量、数据类型、控制结构等内容…”等具体信息。

3. 两者的对比

特点传统搜索RAG 搜索
基本原理关键词匹配,基于文档检索结合检索和生成,通过检索补充生成信息
返回内容直接返回相关的文档或片段在检索到的文档或片段基础上生成自然语言回答
结果类型片段、段落或完整文档生成的文本、回答、摘要等
准确度依赖于关键词和文档匹配的精确度依赖于检索的相关性以及生成模型的理解能力
适用场景文档查找、信息匹配复杂问题回答、聊天机器人、知识增强
理解与生成不具备生成能力,仅提供检索结果通过生成模型理解检索内容并提供自然语言生成的回答

4. RAG 的工作流程

RAG 搜索通常分为以下几个步骤:

  1. 检索:首先,检索系统(如 Elasticsearch)基于用户的查询,从文档库或数据库中提取相关的文档或信息片段。
  2. 信息聚合:将检索到的文档或片段作为背景知识输入到生成模型中。
  3. 生成:生成模型(如 GPT-3、T5、BART 等)基于背景知识和查询生成一个符合用户需求的答案或内容,可能还会补充上下文信息。
  4. 返回结果:将生成的答案返回给用户,通常会更加自然、流畅并且上下文相关。

5. RAG 与传统搜索的本质区别

  • 生成能力:RAG 结合了信息检索和生成模型,不仅提供检索到的信息片段,还能根据这些片段生成完整且自然的答案,而传统搜索系统仅返回检索到的原始文档或片段。
  • 上下文理解:RAG 在生成过程中能够理解检索到的上下文,并整合相关信息来生成更加精准和连贯的回答。传统的搜索系统并不具备这种能力,它仅仅依赖匹配结果。
  • 灵活性与适应性:RAG 能够适应复杂的查询,尤其是那些需要结合多个文档或上下文信息的查询。传统搜索则更多是简单的匹配和查找。

6. RAG 在实际应用中的优势

  • 复杂查询处理:RAG 特别适合处理复杂或开放式问题,例如当用户询问一个多方面的问题时,RAG 能够通过检索多个相关文档,并生成一个综合的答案。
  • 提升生成质量:生成模型可以结合检索到的信息,从而生成更符合用户需求的回答,避免生成模型单纯依赖预训练知识时可能产生的错误或不准确回答。
  • 提高智能问答系统效果:RAG 非常适合于问答系统,尤其是在需要外部知识库或文档库的场景下,生成部分能够通过集成检索结果提供更加智能的解答。

总结

  • 传统搜索:关注 检索匹配,返回最相关的文档或片段。
  • RAG 搜索:不仅执行检索,还通过 生成模型 结合检索到的信息生成一个智能的、上下文相关的答案,适应更复杂和多样化的查询需求。