RAG搜索不准确,4个优化来解决

很多人发现自己建立的AI知识库非常不准确,那么用一下几个方法,优化优化看看效果吧!


1. 混合检索策略(稀疏 + 稠密检索)

功能选型:

  • 稀疏检索:选用 BM25 算法,如 Elasticsearch 内置的 BM25(成熟、易用、对词频敏感)。
  • 稠密检索:选用基于预训练嵌入模型的检索,如使用 Hugging Face 的 “all-MiniLM-L6-v2” 模型,通过 Faiss 或 Pinecone 进行向量化检索。

实现方式:

  • 数据预处理:对文档进行文本清洗和合理切分(如滑动窗口或递归分块),确保关键信息完整保留。
  • 独立检索模块
    • 使用 Elasticsearch 实现 BM25 检索。
    • 使用 Faiss(或 Pinecone 等向量数据库)对文档进行向量化,并实现稠密检索。
  • 混合策略:将两种检索得到的候选结果按权重组合,例如: 综合得分 = α * BM25 得分 + (1 – α) * 嵌入相似度得分
    通过调整 α 来平衡两者,确保召回结果既能捕捉到关键词匹配,也能理解语义相似性。

参考实现示例(Python + Elasticsearch + Faiss):


2. 重排序模块(多阶段检索)

功能选型:

  • 候选文档精排:采用交叉编码器(Cross-Encoder)模型,如 “cross-encoder/ms-marco-MiniLM-L-6-v2”,可以更好地捕捉 query 与候选文档之间的交互信息。

实现方式:

  • 第一阶段:使用混合检索策略快速召回一批候选文档(例如 top 100)。
  • 第二阶段:将 query 与每个候选文档拼接,输入交叉编码器模型,获得精确的相关性得分,然后重新排序,选择最优的 top K(例如 top 5)供生成模型使用。

参考实现示例(基于 Hugging Face Transformers):


3. 查询重写与上下文压缩

功能选型:

  • 查询重写:利用大语言模型(例如 GPT-3.5 / GPT-4 或开源模型如 ChatGLM)将用户原始查询改写为更明确、更细化的版本,从而提高检索器的召回率。
  • 上下文压缩:使用 LLM 或专门的摘要模型(如 T5、PEGASUS)对召回的文档进行压缩,只保留与查询最相关的部分,减少无关信息干扰生成过程。

实现方式:

  • 查询重写模块:构建一个函数,将原始查询发送给 LLM API,返回改写后的查询文本。
  • 上下文压缩模块:对每个候选文档,调用摘要模型生成“精炼版”上下文,然后再将这些压缩后的内容传给生成模块。

参考实现示例:


4. 用户反馈与持续优化

功能选型:

  • 在线反馈机制:集成反馈按钮或评分系统,让用户标注回答的准确性。
  • 持续优化:定期使用收集的反馈数据进行模型微调(可以采用自监督或知识蒸馏方法),进一步提高嵌入模型与检索器的表现。

实现方式:

  • 在系统前端为每个回答添加“反馈”按钮,记录用户评分和意见;
  • 后台记录反馈日志,构建反馈数据集;
  • 利用反馈数据(正反馈和负反馈样本)进行再训练或使用增量学习策略来调整检索模块(例如对负样本进行hard negative mining)或微调交叉编码器的排序能力。

参考实现思路:


总结

通过以上功能模块的选型与实现,可以构建一个具有以下能力的优化系统:

  • 混合检索 能同时利用 BM25 和嵌入模型的优势;
  • 重排序模块 通过交叉编码器精细调整候选文档顺序;
  • 查询重写与上下文压缩 优化检索输入和结果内容;
  • 用户反馈 帮助不断迭代和优化模型效果。

使用一粒云RAG,更好用更精准的RAG系统